On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue
نویسندگان
چکیده
منابع مشابه
Multiple Nontrivial Solutions for Nonlinear Eigenvalue Problems
In this paper we study a nonlinear eigenvalue problem driven by the p-Laplacian. Assuming for the right-hand side nonlinearity only unilateral and sign conditions near zero, we prove the existence of three nontrivial solutions, two of which have constant sign (one is strictly positive and the other is strictly negative), while the third one belongs to the order interval formed by the two opposi...
متن کاملMULTIPLE SOLUTIONS FOR A DIRICHLET PROBLEM WITH p-LAPLACIAN AND SET-VALUED NONLINEARITY
The existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via suband supersolution methods as well as variational techniques for nonsmooth functions. 2000 Mathematics subject classification: 35J20, 35J85, 49J40.
متن کاملRadially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball with Jumping Nonlinearities
Let p, 0. Let g: R —> R be a locally Lipschitzian function satisfying the superlinear jumping condition: (i) limu->-ao(g(u)/u) e R, (ii) limu^ 0 , and (iii) limu^oo(w/g(u))Nl2(NG(Ku) ((N 2)/2)u • g(u)) = oo for some k 6 (0,1] where G is the primitive of g . Here we prove that the number of solutions of the boundary va...
متن کاملNontrivial solutions of second-order singular Dirichlet systems
where q ∈ C((, ),R), e = (e, . . . , eN )T ∈ C((, ),RN ), N ≥ , and the nonlinear term f (t,u) ∈ C((, )×RN \ {},RN ). We are mainly motivated by the recent excellent works [–], in which singular periodic systems were extensively studied. Let R+ denote the set of vectors of RN with positive components. For a fixed vector v ∈R+ , we say that system (.) presents a singularity at the o...
متن کاملSolutions to a quadratic inverse eigenvalue problem
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1989
ISSN: 0022-0396
DOI: 10.1016/0022-0396(89)90090-9